Applications of Deep Learning to Cryptocurrency Trading: A Systematic Analysis
Abstract
This systematic review analyzes 75 papers (2020-2025) applying Deep Learning (DL) techniques to cryptocurrency trading. It evaluates various DL architectures, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and Transformers, and finds that DL methods outperform traditional approaches in managing the high volatility and non-linear patterns of crypto markets. Key findings highlight the promise of hybrid and ensemble models, the benefits of integrating blockchain data, sentiment analysis, and macroeconomic factors for improved predictions, and the potential of Deep Reinforcement Learning (DRL) for developing autonomous trading strategies with risk-adjusted returns. However, challenges such as model interpretability, nonstationary data, and real-world deployment persist. The review emphasizes emerging directions like explainable Artificial Intelligence (AI) for transparent decision-making and high-frequency trading applications, providing a critical synthesis of methodologies, empirical results, and research gaps to inform both academic research and practical trading system development.
Keywords:
Cryptocurrency, Deep learning, Artificial intelligence, Cryptocurrency trading, Reinforcement learning, Time series analysisReferences
- [1] Murray, K., Rossi, A., Carraro, D., & Visentin, A. (2023). On forecasting cryptocurrency prices: A comparison of machine learning, deep learning, and ensembles. Forecasting, 5(1), 196–209. https://doi.org/10.3390/forecast5010010
- [2] Khedmati, M., Seifi, F., & Azizi, M. J. (2020). Time series forecasting of bitcoin price based on autoregressive integrated moving average and machine learning approaches. International journal of engineering, 33(7), 1293–1303. https://www.researchgate.net/publication/350007539
- [3] Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of operations research, 297(1), 3–36. https://doi.org/10.1007/s10479-020-03575-y
- [4] Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting cryptocurrency prices using LSTM, GRU, and Bi-Directional LSTM: A deep learning approach. Fractal and fractional, 7(2), 1–18. https://doi.org/10.3390/fractalfract7020203
- [5] Hamayel, M. J., & Owda, A. Y. (2021). A novel cryptocurrency price prediction model using GRU, LSTM and bi-LSTM machine learning algorithms. AI, 2(4), 477–496. https://doi.org/10.3390/ai2040030
- [6] Livieris, I. E., Pintelas, E., Stavroyiannis, S., & Pintelas, P. (2020). Ensemble deep learning models for forecasting cryptocurrency time-series. Algorithms, 13(5), 1–21. https://doi.org/10.3390/a13050121
- [7] Zhang, Z., Dai, H. N., Zhou, J., Mondal, S. K., García, M. M., & Wang, H. (2021). Forecasting cryptocurrency price using convolutional neural networks with weighted and attentive memory channels. Expert systems with applications, 183, 115378. https://doi.org/10.1016/j.eswa.2021.115378
- [8] Pintelas, E., Livieris, I. E., Stavroyiannis, S., Kotsilieris, T., & Pintelas, P. (2020). Investigating the problem of cryptocurrency price prediction: A deep learning approach. Artificial intelligence applications and innovations (pp. 99–110). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-49186-4_9
- [9] John, D. L., Binnewies, S., & Stantic, B. (2024). Cryptocurrency price prediction algorithms: A survey and future directions. Forecasting, 6(3), 637–671. https://doi.org/10.3390/forecast6030034
- [10] Mienye, E., Jere, N., Obaido, G., Mienye, I. D., & Aruleba, K. (2024). Deep learning in finance: A survey of applications and techniques. AI, 5(4), 2066–2091. https://doi.org/10.3390/ai5040101
- [11] Mohammadshafie, A., Mirzaeinia, A., Jumakhan, H., & Mirzaeinia, A. (2025). Deep reinforcement learning strategies in finance: Insights into asset holding, trading behavior, and purchase diversity. Artificial intelligence and applications (pp. 449–463). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-86623-4_41
- [12] Pippas, N., Ludvig, E. A., & Turkay, C. (2025). The evolution of reinforcement learning in quantitative finance: A Survey. ACM computing surveys, 57(11), 1–15. https://doi.org/10.1145/3733714
- [13] Rao, K. R., Prasad, M. L., Kumar, G. R., Natchadalingam, R., Hussain, M. M., & Reddy, P. C. S. (2023). Time-series cryptocurrency forecasting using ensemble deep learning. 2023 international conference on circuit power and computing technologies (ICCPCT) (pp. 1446–1451). IEEE. https://doi.org/10.1109/ICCPCT58313.2023.10245083
- [14] Ammer, M. A., & Aldhyani, T. H. H. (2022). Deep learning algorithm to predict cryptocurrency fluctuation prices: Increasing investment awareness. Electronics, 11(15), 1–22. https://doi.org/10.3390/electronics11152349
- [15] Bouteska, A., Abedin, M. Z., Hajek, P., & Yuan, K. (2024). Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods. International review of financial analysis, 92, 103055. https://doi.org/10.1016/j.irfa.2023.103055
- [16] Liu, M., Li, G., Li, J., Zhu, X., & Yao, Y. (2021). Forecasting the price of Bitcoin using deep learning. Finance research letters, 40, 101755. https://doi.org/10.1016/j.frl.2020.101755
- [17] Lamothe-Fernández, P., Alaminos, D., Lamothe-López, P., & Fernández-Gámez, M. A. (2020). Deep learning methods for modeling bitcoin price. Mathematics, 8(8), 1–13. https://doi.org/10.3390/math8081245
- [18] Kim, G., Shin, D. H., Choi, J. G., & Lim, S. (2022). A Deep learning-based cryptocurrency price prediction model that uses on-chain data. IEEE access, 10, 56232–56248. https://doi.org/10.1109/ACCESS.2022.3177888
- [19] Akyildirim, E., Cepni, O., Corbet, S., & Uddin, G. S. (2023). Forecasting mid-price movement of Bitcoin futures using machine learning. Annals of operations research, 330(1), 553–584. https://doi.org/10.1007/s10479-021-04205-x
- [20] Kang, C. Y., Lee, C. P., & Lim, K. M. (2022). Cryptocurrency price prediction with convolutional neural network and stacked gated recurrent unit. Data, 7(11), 1–13. https://doi.org/10.3390/data7110149
- [21] Liu, Y., Li, Z., Nekhili, R., & Sultan, J. (2023). Forecasting cryptocurrency returns with machine learning. Research in international business and finance, 64, 101905. https://doi.org/10.1016/j.ribaf.2023.101905
- [22] Parvini, N., Abdollahi, M., Seifollahi, S., & Ahmadian, D. (2022). Forecasting Bitcoin returns with long short-term memory networks and wavelet decomposition: A comparison of several market determinants. Applied soft computing, 121, 108707. https://doi.org/10.1016/j.asoc.2022.108707
- [23] Zoumpekas, T., Houstis, E., & Vavalis, M. (2020). ETH analysis and predictions utilizing deep learning. Expert systems with applications, 162, 113866. https://doi.org/10.1016/j.eswa.2020.113866
- [24] Sebastião, H., & Godinho, P. (2021). Forecasting and trading cryptocurrencies with machine learning under changing market conditions. Financial innovation, 7(1), 1–33. https://doi.org/10.1186/s40854-020-00217-x
- [25] Uras, N., Marchesi, L., Marchesi, M., & Tonelli, R. (2020). Forecasting Bitcoin closing price series using linear regression and neural networks models. PeerJ computer science, 6, e279. https://doi.org/10.7717/peerj-cs.279
- [26] Dutta, A., Kumar, S., & Basu, M. (2020). A gated recurrent unit approach to bitcoin price prediction. Journal of risk and financial management, 13(2), 1–16. https://doi.org/10.3390/jrfm13020023
- [27] Borges, T. A., & Neves, R. F. (2020). Ensemble of machine learning algorithms for cryptocurrency investment with different data resampling methods. Applied soft computing, 90, 106187. https://doi.org/10.1016/j.asoc.2020.106187
- [28] M., P., Nguyen, T. N., Hamdi, M., & Cengiz, K. (2021). Global cryptocurrency trend prediction using social media. Information processing & management, 58(6), 102708. https://doi.org/10.1016/j.ipm.2021.102708
- [29] Shahbazi, Z., & Byun, Y. C. (2021). Improving the cryptocurrency price prediction performance based on reinforcement learning. IEEE access, 9, 162651–162659. https://doi.org/10.1109/ACCESS.2021.3133937
- [30] Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics, 10(3), 1–16. https://doi.org/10.3390/electronics10030287
- [31] Jaquart, P., Köpke, S., & Weinhardt, C. (2022). Machine learning for cryptocurrency market prediction and trading. The journal of finance and data science, 8, 331–352. https://doi.org/10.1016/j.jfds.2022.12.001
- [32] Ye, Z., Wu, Y., Chen, H., Pan, Y., & Jiang, Q. (2022). A stacking ensemble deep learning model for bitcoin price prediction using twitter comments on Bitcoin. Mathematics, 10(8), 1–21. https://doi.org/10.3390/math10081307
- [33] Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A deep learning-based cryptocurrency price prediction scheme for financial institutions. Journal of information security and applications, 55, 102583. https://doi.org/10.1016/j.jisa.2020.102583
- [34] Koker, T. E., & Koutmos, D. (2020). Cryptocurrency trading using machine learning: A Technical note. Journal of risk and financial management, 13(8), 1–7. https://doi.org/10.3390/jrfm13080178
- [35] Sattarov, O., Muminov, A., Lee, C. W., Kang, H. K., Oh, R., Ahn, J., … ., & Jeon, H. S. (2020). Recommending cryptocurrency trading points with deep reinforcement learning approach. Applied sciences, 10(4), 1–18. https://doi.org/10.3390/app10041506
- [36] Liu, X. Y., Yang, H., Gao, J., & Wang, C. D. (2021). FinRL: Deep reinforcement learning framework to automate trading in quantitative finance. Proceedings of the second ACM international conference on AI in finance (pp. 1–9). Association for computing machinery. https://doi.org/10.1145/3490354.3494366
- [37] Schnaubelt, M. (2022). Deep reinforcement learning for the optimal placement of cryptocurrency limit orders. European journal of operational research, 296(3), 993–1006. https://doi.org/10.1016/j.ejor.2021.04.050
- [38] Liu, F., Li, Y., Li, B., Li, J., & Xie, H. (2021). Bitcoin transaction strategy construction based on deep reinforcement learning. Applied soft computing, 113, 107952. https://doi.org/10.1016/j.asoc.2021.107952
- [39] Nasirtafreshi, I. (2022). Forecasting cryptocurrency prices using recurrent neural network and long short-term memory. Data & knowledge engineering, 139, 102009. https://doi.org/10.1016/j.datak.2022.102009
- [40] Cui, T., Ding, S., Jin, H., & Zhang, Y. (2023). Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach. Economic modelling, 119, 106078. https://doi.org/10.1016/j.econmod.2022.106078
- [41] Babaei, G., Giudici, P., & Raffinetti, E. (2022). Explainable artificial intelligence for crypto asset allocation. Finance research letters, 47, 102941. https://doi.org/10.1016/j.frl.2022.102941
- [42] Goodell, J. W., Ben Jabeur, S., Saâdaoui, F., & Nasir, M. A. (2023). Explainable artificial intelligence modeling to forecast bitcoin prices. International review of financial analysis, 88, 102702. https://doi.org/10.1016/j.irfa.2023.102702
- [43] Parekh, R., Patel, N. P., Thakkar, N., Gupta, R., Tanwar, S., Sharma, G., … ., & Sharma, R. (2022). DL-GuesS: Deep learning and sentiment analysis-based cryptocurrency price prediction. IEEE access, 10, 35398–35409. https://doi.org/10.1109/ACCESS.2022.3163305
- [44] Guo, H., Zhang, D., Liu, S., Wang, L., & Ding, Y. (2021). Bitcoin price forecasting: A perspective of underlying blockchain transactions. Decision support systems, 151, 113650. https://doi.org/10.1016/j.dss.2021.113650
- [45] Erfanian, S., Zhou, Y., Razzaq, A., Abbas, A., Safeer, A. A., & Li, T. (2022). Predicting Bitcoin (BTC) Price in the context of economic theories: A machine learning approach. Entropy, 24(10), 1–29. https://doi.org/10.3390/e24101487
- [46] Awoke, T., Rout, M., Mohanty, L., & Satapathy, S. C. (2021). Bitcoin price prediction and analysis using deep learning models. Communication software and networks (pp. 631–640). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5397-4_63
- [47] Cocco, L., Tonelli, R., & Marchesi, M. (2021). Predictions of bitcoin prices through machine learning based frameworks. PeerJ computer science, 7, e413. https://doi.org/10.7717/peerj-cs.413
- [48] Kim, H. M., Bock, G. W., & Lee, G. (2021). Predicting Ethereum prices with machine learning based on Blockchain information. Expert systems with applications, 184, 115480. https://doi.org/10.1016/j.eswa.2021.115480
- [49] Mahdi, E., Leiva, V., Mara’Beh, S., & Martin-Barreiro, C. (2021). A new approach to predicting cryptocurrency returns based on the gold prices with support vector machines during the COVID-19 pandemic using sensor-related data. Sensors, 21(18), 1–16. https://doi.org/10.3390/s21186319
- [50] Saad, M., Choi, J., Nyang, D., Kim, J., & Mohaisen, A. (2020). Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE systems journal, 14(1), 321–332. https://doi.org/10.1109/JSYST.2019.2927707
- [51] Chen, Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of computational and applied mathematics, 365, 112395. https://doi.org/10.1016/j.cam.2019.112395
- [52] Singh, H. J., & Hafid, A. S. (2020). Prediction of transaction confirmation time in ethereum blockchain using machine learning. Blockchain and applications (pp. 126–133). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-23813-1_16
- [53] Ortu, M., Uras, N., Conversano, C., Bartolucci, S., & Destefanis, G. (2022). On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert systems with applications, 198, 116804. https://doi.org/10.1016/j.eswa.2022.116804
- [54] Gurrib, I., & Kamalov, F. (2021). Predicting bitcoin price movements using sentiment analysis: a machine learning approach. Studies in economics and finance, 39(3), 347–364. https://doi.org/10.1108/SEF-07-2021-0293
- [55] Serafini, G., Yi, P., Zhang, Q., Brambilla, M., Wang, J., Hu, Y., & Li, B. (2020). Sentiment-driven price prediction of the bitcoin based on statistical and deep learning approaches. 2020 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE. https://doi.org/10.1109/IJCNN48605.2020.9206704
- [56] Shang, D., Yan, Z., Zhang, L., & Cui, Z. (2023). Digital financial asset price fluctuation forecasting in digital economy era using blockchain information: A reconstructed dynamic-bound Levenberg–Marquardt neural-network approach. Expert systems with applications, 228, 120329. https://doi.org/10.1016/j.eswa.2023.120329
- [57] Wang, C., Shen, D., & Li, Y. (2022). Aggregate investor attention and bitcoin return: The long short-term memory networks perspective. Finance research letters, 49, 103143. https://doi.org/10.1016/j.frl.2022.103143
- [58] Politis, A., Doka, K., & Koziris, N. (2021). Ether price prediction using advanced deep learning models. 2021 ieee international conference on blockchain and cryptocurrency (ICBC) (pp. 1–3). IEEE. https://doi.org/10.1109/ICBC51069.2021.9461061
- [59] Tanwar, S., Patel, N. P., Patel, S. N., Patel, J. R., Sharma, G., & Davidson, I. E. (2021). Deep learning-based cryptocurrency price prediction scheme with inter-dependent relations. IEEE access, 9, 138633–138646. https://doi.org/10.1109/ACCESS.2021.3117848
- [60] Oyedele, A. A., Ajayi, A. O., Oyedele, L. O., Bello, S. A., & Jimoh, K. O. (2023). Performance evaluation of deep learning and boosted trees for cryptocurrency closing price prediction. Expert systems with applications, 213, 119233. https://doi.org/10.1016/j.eswa.2022.119233
- [61] Gurdgiev, C., & O’Loughlin, D. (2020). Herding and anchoring in cryptocurrency markets: Investor reaction to fear and uncertainty. Journal of behavioral and experimental finance, 25, 100271. https://doi.org/10.1016/j.jbef.2020.100271
- [62] Lahmiri, S., & Bekiros, S. (2020). Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market. Chaos, solitons & fractals, 133, 109641. https://doi.org/10.1016/j.chaos.2020.109641
- [63] Vo, A., & Yost-Bremm, C. (2020). A high-frequency algorithmic trading strategy for cryptocurrency. Journal of computer information systems, 60(6), 555–568. https://doi.org/10.1080/08874417.2018.1552090
- [64] Aras, S. (2021). Stacking hybrid GARCH models for forecasting Bitcoin volatility. Expert systems with applications, 174, 114747. https://doi.org/10.1016/j.eswa.2021.114747